(x^2-3x-7)/x+3=0

Simple and best practice solution for (x^2-3x-7)/x+3=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2-3x-7)/x+3=0 equation:



(x^2-3x-7)/x+3=0
Domain of the equation: x!=0
x∈R
We multiply all the terms by the denominator
(x^2-3x-7)+3*x=0
We add all the numbers together, and all the variables
3x+(x^2-3x-7)=0
We get rid of parentheses
x^2+3x-3x-7=0
We add all the numbers together, and all the variables
x^2-7=0
a = 1; b = 0; c = -7;
Δ = b2-4ac
Δ = 02-4·1·(-7)
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{7}}{2*1}=\frac{0-2\sqrt{7}}{2} =-\frac{2\sqrt{7}}{2} =-\sqrt{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{7}}{2*1}=\frac{0+2\sqrt{7}}{2} =\frac{2\sqrt{7}}{2} =\sqrt{7} $

See similar equations:

| 17=-5t+2 | | 4x-9+4x-9+20x=38 | | T+20+6t+7t+6=180 | | 3x+4.5=21 | | x+30+8x+x=180 | | –16h−9+14h=–1−2h | | -4(3+m)=24 | | x.2.3x-15+4.2x=69.5 | | 4x-119=5x+106 | | 9x-4=2x+3 | | q/7=8 | | x+3=14* | | 7m÷3=28 | | 2x=2(x-3) | | .x+3=14 | | 15u+17=–4+16+15u | | 7/x=17/75 | | v+15+v-11+2v=180 | | 2x+16-2x+16-x+14-x+14=360 | | 83=3(1+4v)-2v | | .x+3=14* | | -8v-28=-2(v-7) | | 2(11-x)=57-7x | | 3x^2-6x+5x+1=15 | | 2d+83=12+12d | | 2x+5=-25* | | -5=x+3* | | 4(3-5y)-7(5-4y)=0 | | -1=x-1/14 | | -2(y-3)=4(y-12) | | -6–3y=-12 | | 3x-3=13x+7 |

Equations solver categories